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Abstract

In this article, we determined optimum positions of discrete heaters by maximizing the conductance and then studied heat transfer and volume
flow rate with discrete heaters at their optimum positions. Continuity, Navier–Stokes and energy equations are solved by finite difference –
control volume numerical method. The relevant governing parameters were: the Rayleigh numbers, Ra from 103 to 107, the cavity aspect ratio,
A = H/L = 1, the heater size h/L from 0.05 to 0.20 and number of heaters from 1 to 3. We found that the global conductance is as an increasing
function of the Rayleigh number, the heater size and the number of heaters. Best thermal performance is obtained by positioning the discrete
heaters closer to the bottom and closer to each other at the beginning of fluid flow. The configuration is not equidistance but follows a function
of the Rayleigh number. The Nusselt number and the volume flow rate in and out the open cavity are also increasing functions of the Rayleigh
number, the heater size and the number of heaters.
© 2007 Elsevier Masson SAS. All rights reserved.
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1. Introduction

The thermal performance of electronic packages containing
a number of discrete heat sources has been studied extensively
in the literature. The design problem in electronic packages is to
maintain cooling of chips in an effective way to prevent over-
heating and hot spots. This is achieved generally by effective
cooling by natural convection, mixed convection and in cer-
tain cases by other means such as heat pipes, and finally by
better design. In the latter case, the objective is to maximize
heat transfer density so that the maximum temperature speci-
fied for safe operation of a chip is not exceeded. Thus, optimum
placement of discrete heaters with respect to usual equidistant
placement may be required. In this respect, few theoretical and
experimental studies have been published (e.g. [1–3]). As an
application of the constructal method, an analytical study has
been presented by da Silva et al. [3] for the case of large num-
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ber of heat sources placed on a vertical plate. As expected, it is
shown that the heaters should be placed closer when they are
placed at the beginning of cooling fluid flow and further apart
later when in contact with already heated cooling fluid flow.
Recently, several papers on various geometrical configurations
have been published on optimal distribution of discrete heaters
over a horizontal plate with laminar forced convection [4] and
in open ended channels with natural convection [5–7].

We see from the brief review that the case of open cavi-
ties with discrete heaters in their optimum positions has not
been addressed in the literature. In the present study, our aim
is (i) To determine optimum positions of small number of dis-
crete heaters with finite size placed on the vertical wall fac-
ing the opening of an open square cavity. The discrete heaters
are cooled by the ambient air circulating through the open-
ing. (ii) To study the thermal performance of optimally placed
heaters in a square open cavity.

2. Problem and mathematical model

The problem is to determine the optimum position of one,
two or more discrete heating elements in an open square cav-
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Nomenclature

A enclosure aspect ratio, = H/L

cp heat capacity . . . . . . . . . . . . . . . . . . . . . . . . . . . J/kg K
g acceleration due to gravity . . . . . . . . . . . . . . . . m/s2

H cavity height . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
h heater size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
k thermal conductivity . . . . . . . . . . . . . . . . . . . W/m K
L cavity width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . m
Nu Nusselt number, defined by Eq. (6)
n coordinate in any direction
p pressure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Pa
P dimensionless pressure, = (p − p∞)L2/ρα2

Pr Prandtl number, = υ/α

q ′′ heat flux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . W/m2

q dimensionless heat flux, = ∂θ
∂X

Ra Rayleigh number, = gβq ′′L4/(υαk)

T temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . K
t time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . s
U,V dimensionless fluid velocities, = uL/α,vL/α

V̇ dimensionless volume flow rate through the open-
ing

X,Y dimensionless Cartesian coordinates, = x/L,y/L

x,y Cartesian coordinates

Greek symbols

α thermal diffusivity . . . . . . . . . . . . . . . . . . . . . . . m2/s
β volumetric coefficient of thermal expansion . . 1/K
υ kinematic viscosity . . . . . . . . . . . . . . . . . . . . . . . m2/s
ρ fluid density . . . . . . . . . . . . . . . . . . . . . . . . . . . . kg/m3

ψ stream function
θ dimensionless temperature, = (T − T∞)/(Lq ′′/k)

τ dimensionless time, = αt/L2

Superscripts

− average

Subscripts

ext extremum
in into cavity
max maximum
opt optimum
∞ ambient value
1,2,3 first, second and third heater
ity, cooled by natural convection. Further, heat transfer perfor-
mance of each case is studied using the determined optimum
positions.

Schematic of the two-dimensional open square cavity with
three discrete heating elements case and the boundary condi-
tions are shown in Fig. 1. All three solid boundaries of the
cavity are adiabatic and the side facing the vertical left bound-
ary is open to ambient air. One, two or three discrete heating
elements are installed on the vertical left boundary. Each heat-
ing element of height h and coordinate (0, yi ) dissipates heat at
constant heat flux, q ′′. The cooling air from a reservoir enters

Fig. 1. Schematic of the square cavity, the coordinate system and boundary
conditions.
the cavity through the lower part of the opening; it circulates
along the heating elements and exits from the upper part of the
opening.

Two-dimensional conservation equations for mass, momen-
tum and energy are used with Bussinesq approximation. It is
assumed that the radiation is negligible. By using L as the
length scale, α/L as the velocity scale, Lq ′′/k as the tempera-
ture scale and L2/α for the time scale, we obtained following
non-dimensional equations

∂U

∂X
+ ∂V

∂Y
= 0 (1)

∂U

∂τ
+ U

∂U

∂X
+ V

∂U

∂Y
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+ Pr∇2U (2)
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∂τ
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∂Y
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∂Y
= −∂P

∂Y
+ Ra Pr θ + Pr ∇2V (3)
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∂τ
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∂θ

∂X
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∂θ

∂Y
= ∇2θ (4)

where Ra = gβq ′′L4/(υαk) and Pr = υ/α.
The average and normalized Nusselt numbers are calculated

as

Nu = − ∫ A

0
∂θ
∂X

dY∫ A

0 (θ1 − θ2)
(5)

Nu = NuRa

NuRa=0
(6)

where NuRa=0 is calculated at Ra = 0.
The volume flow rate, V̇ is calculated as

V̇ = −
∫

Uin dY (7)
X=1
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where Uin = UX=1 if UX=1 < 0 and Uin = 0 if UX=1 � 0.
The stream function is calculated from its definition as

U = −∂ψ

∂Y
, V = ∂ψ

∂X
(8)

ψ is zero on the solid surfaces and the streamlines are drawn by

ψ = (ψmax − ψmin)/n with n is the number of increments.

Boundary conditions are

On solid surfaces: U = 0, V = 0 (9)

On adiabatic walls:
∂θ

∂n
= 0 (10)

On the heaters: q = ∂θ

∂X
= 1 (11)

At the opening:
∂V

∂X
= 0,

∂U

∂X
= −∂V

∂Y(
∂θ

∂X

)
out

= 0, θin = 0 (12)

The boundary condition at the opening, Eq. (12) is shown to be
a satisfactory for the case of computation domain confined to
the open cavity [8].

The conductance is calculated as

C =
∫ y+h

y
q ′ dy

k(Tmax − T∞)
= h/L

θmax
(13)

3. Numerical technique

The numerical method used to solve Eqs. (1) to (4) with the
boundary conditions Eqs. (8) to (11) is the SIMPLER (Semi-
Implicit Method for Pressure Linked Equations Revised) al-
gorithm [9]. The computer code based on the mathematical
formulation presented above and the SIMPLER method were
validated earlier with respect to the benchmark [10]. The re-
sults of validation with the benchmark [11] as well as another
[12] showed that the deviations in Nusselt number and the max-
imum stream function at Ra = 106 were 0.60% and 1.12% re-
spectively. It was seen that the concordance was excellent. In
addition, the average Nusselt numbers at the hot and cold walls
were compared, which showed a maximum difference of about
0.5% in all runs. The present code was tested also to simulate
the case studied by Chan and Tien with enlarged computa-
tional domain [13]. We used restricted computational domain
and compared the results with theirs with extended computa-
tional domain. The results are shown in Table 1. It is noted that
in restricted domain case, the deviation is higher at Ra = 107,
because the flow simulation at the cavity corners is not perfect.
Despite this, the approximation made is acceptable.

Uniform grid in X and Y direction were used for all com-
putations. Grid convergence was studied for the case of A = 1
with grid sizes from 21 × 21 to 151 × 151 at Ra = 105 and 107.
The results are presented in Table 2. We see in the 5th and 6th
columns that, the variations in Nu and C are 6.2 × 10−4 and
1.07 × 10−2 respectively at Ra = 105, and they are 2.1 × 10−3

and 1.3 × 10−2 respectively at Ra = 107. Hence, we made a
compromise between computation time and precision, and se-
lected the grid size of 81 × 81. Using a system with a proces-
sor of 3.2 GHz clock speed, for A = 1, 81 × 81 grid size, at
Table 1
Comparison of the results with the enlarged domain [13] and the cavity re-
stricted domain used in this study

Ra Nu/V̇ [13] Nu/V̇ [this study] % Deviations

105 7.69/21.10 7.81/22.65 −1.56/−7.34
106 15.00/47.30 15.23/47.02 −1.53/+0.59
107 28.60/96.00 29.86/94.15 −4.41/+1.93

Table 2
Grid independence study results with A = 1 at Ra = 105 and 107

Size 21 × 21 41 × 41 61 × 61 81 × 81 101 × 101 151 × 151

Ra = 105 Nu 3.323 3.223 3.211 3.206 3.204 3.201
C 0.818 0.940 0.985 1.008 1.021 1.039

Ra = 107 Nu 6.973 6.918 6.831 6.800 6.786 6.773
C 1.287 1.592 1.672 1.709 1.733 1.766

Ra = 106, the typical execution time was 92 s for single heater
case and 76 s for three heaters case.

A converged solution was obtained by iterating in time until
variations in the primitive variables between subsequent time
steps were:∑(

φold
i,j − φi,j

)
< 10−4 (14)

where φ stands for U , V , and θ .
Within the same time step, the residual of the pressure term

was less than 10−3 [9]. In addition, the accuracy of the solu-
tion was double-checked using the energy conservation on the
domain to ensure it was less than 10−4.

4. Results and discussion

In the first part, we present the optimization study results
and in the second, a parametric study results obtained with
the discrete heating elements at their optimum positions. The
aspect ratio was, A = 1 and kept constant. The variable para-
meters considered are dimensionless height of heating element,
h/L = 0.05, 0.10 and 0.20, number of heating elements, N = 1,
2 and 3, and Rayleigh number, Ra = 103 to 107. Prandtl num-
ber, Pr = 0.71 for air was kept constant.

4.1. Optimization study

It was carried out to obtain the optimum position of heat-
ing elements by taking the number of heaters and their size
constant, and by varying their positions. The procedure was as
follows: (i) We compute conductance C(Y ) for a given N and
h/L, at a constant Ra, (ii) we determine the maximum conduc-
tion, Cmax at its optimum position Yopt. (iii) We repeat the steps
(i) and (ii) to determine C(Y ), Cmax and Yopt at all the other
Rayleigh numbers, from 103 to 107, while keeping N and h/L

the same. (iv) We repeat the steps (i) and (iii) to obtain the max-
imum conductance at its optimum position, Cmax(Yopt) for the
same number of heater, N but different heater sizes, h/L. Then,
we repeat the steps (i)–(iv) to obtain the maximum conduc-
tance at its optimum position, Cmax(Yopt) for different number
of heaters, N . With the variable parameters considered above,
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for each heater size, we had 80 computations for N = 1, 250
for N = 2 and 190 for N = 3. For three heater sizes, we had all
together about 1500 computations to determine the optimum
positions of the cases studied.

Typical results to obtain the conductance C(Y ) for N = 1,
h/L = 0.10, Ra = 103, 105 and 107 are presented in Fig. 2(a).
We can make several observations: (i) For all the Rayleigh num-
bers, the conductance changes with the position of the heater.
We have smaller conductance at the lowest position when the
heater is at the bottom; the conductance is increasing gradually
as its position is raised reaching a maximum around mid-height
and it is decreasing thereafter to another low conductance at
the top position. This is expected since the cold air enters the
cavity from the bottom, flows over the lower horizontal bound-
ary and turns around before reaching the vertical side; hence,
the conductance is lower near the bottom corner. As the heater
is positioned higher, the incoming cold air flows over it; its
conductance increases and reaches its maximum value at its op-
timum position. At the near top position, the air flow is again
turned away from the heater to follow the top horizontal bound-
ary and exit the cavity; hence the conductance is again relatively
lower. (ii) For all cases, we see broad maxima, though using
the computation results or changing scale of conductance, it is
not difficult to identify Cmax at its Yopt. (iii) As the Rayleigh
number is increased, the air flow as well as the conductance is
increased. Following the increased air flow rate and resulting
streamlines, the conductance, C(Y ) is increased accordingly.
Indeed, ψext and θmax are 0.414 and 0.1905 at Ra = 103, 5.4799
and 0.1019 at Ra = 105 and 18.9763 and 0.0492 at Ra = 107.
They show that as Ra is increased, the circulation is increased
and the maximum temperature is decreased, which is an ex-
pected result.

The effect of the heater size for Ra = 106 is presented in
Fig. 2(b) for h/L = 0.05, 0.10 and 0.20. We see that the con-
ductance is strongly affected by the heater size. In fact, ψext

and θmax are both increasing functions of the heater size. For
example, at Y = 0.5, ψext and θmax are 9.0116 and 0.0524 for
h/L = 0.05, 10.7295 and 0.0701 for h/L = 0.10 and 12.4927
and 0.0904 for h/L = 0.20. Thus, the conductance calculated
by Eq. (13) is C = 0.95, 1.43 and 2.21 for h/L = 0.05, 0.10
and 0.20 respectively.

We present streamlines and isotherms in Fig. 3 for the cases
corresponding to Fig. 2(a) at Ra = 103,105 and 107. The heater
size is h/L = 0.10 and its two positions are shown, the upper
figures at the bottom, Y = 0 and the lower ones are at the opti-
mum position. We observe in Fig. 3(a) at Ra = 103 that the heat
transfer is conduction dominated and the flow in both cases is
almost similar, the flow is affected by the heater and it is slightly
non-symmetric. ψext and θmax for Ra = 103 are 0.3992 and
0.2547 at Y = 0 and 0.4141 and 0.1895 at Y = Yopt. It is seen
that the heater at its optimum position is better cooled by the in-
flowing air. At Ra = 105 in Fig. 3(b), ψext and θmax are 6.1484
and 0.1538 at Y = 0 and 5.6808 and 0.0992 at Y = Yopt. Again,
the cooling is better at Y = Yopt position. Finally, at Ra = 107

in Fig. 3(c), ψext and θmax are 25.7182 and 0.0585 at Y = 0
and 20.5515 and 0.0491 at Y = Yopt. Once again, the cooling
Fig. 2. The maximization of the global conductance when only one heat source
is present.

is better at Y = Yopt. Thus, Fig. 3 shows that our observations
regarding Fig. 2(a) are confirmed.

We present in Fig. 4 (a) and (b) the optimum heater position
Yopt and the maximum conductance Cmax as a function of the
Rayleigh number for a single heater having h/L = 0.05, 0.10
and 0.20. We see in Fig. 4(a) that generally, the optimum posi-
tion is slightly decreasing function of the Rayleigh number; this
is expected since for increasing Ra, the circulation increases at
the lower half of the cavity and the optimum heater position
is at slightly lower level. We see also that Yopt is at a lower
position as the heater size is increased, as observed earlier in
Fig. 2. We see in Fig. 4(b) that the maximum conductance Cmax

is an increasing function of the Rayleigh number, as observed
in Fig. 2(a). Cmax is an increasing function of heater size, as
a consequence of our observations in Fig. 2(b). The results of
Fig. 4 show that the optimum position of a single heater is at the
lower half of the open cavity and not at the center. The conduc-
tance is maximized by lowering Yopt slightly as the Rayleigh
number is increased.

Following the procedure outlined earlier, we studied the
cases with two heaters and three heaters. For two heaters case,
the optimum position Yopt is determined by searching the best
position of the second heater while keeping the first at a fixed
position and then repeating this procedure until all position
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Fig. 3. Streamlines (on the left) and isotherms (on the right) for h/L = 0.10, the
most lower heater position (the upper figure), the optimum heater position (the
lower figure, (a) Ra = 103, Yopt (the upper and lower figure) = 0.0 and 0.41,

(b) Ra = 105, Yopt (the upper and lower figure) = 0.0 and 0.39, (c) Ra = 107,
Yopt (the upper and lower figure) = 0.0 and 0.38.

combinations are obtained. As a result, the global maximum
conductance Cmax for the two heaters is found. The results are
shown in Fig. 5. We see in Fig. 5(a) that the trends for both
heaters are similar to the case of the single heater, i.e., Yopt is a
Fig. 4. (a) The optimal heater location and (b) corresponding maximum global
conductance as a function of the Rayleigh number for the single heat source.

decreasing function of the Rayleigh for the same reason as ex-
plained earlier. Compared to the single heater case of Fig. 4, the
first heater is at a lower level position and the second heater is
at a higher level. We see in Fig. 5(b) that Cmax is an increasing
function of the Rayleigh as well as of h/L. Compared to a sin-
gle heater case, we notice that Cmax is generally increased since
it is the global maximum conductance comprising two heaters.

We present the results with three heaters in Fig. 6. It appears
in Fig. 6(a) that the optimum position Yopt is again a decreasing
function of Ra from 103 to 107 and also, it is a strong func-
tion of h/L from 0.05 to 0.20. We make similar observations
regarding the positions of the heaters: when compared to the
single and the two heaters cases, the first heater is at the lowest
position and the third heater at the highest position. The max-
imum global conductance Cmax presented in Fig. 6(b) is then
function of the Rayleigh number and heater size, h/L. As in the
previous two cases, the maximum global conductance is an in-
creasing function of the Rayleigh number and also of the heater
size h/L. We note also that the maximum global conductance
Cmax is increased with respect to the case of the two heaters of
Fig. 5(b).

In comparison with the square enclosure case having N = 1,
2 and 3 [3], it is noted that the heater positions and distances
between them have the expected trend at low Rayleigh num-
bers, a conduction dominated regime. At Ra = 103 for example,
we compared the conductance results for h/L = 0.10 of Fig. 3
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Fig. 5. (a) The optimal heater location and (b) corresponding maximum global
conductance as a function of the Rayleigh number for two heat sources.

of [3] and found that the conductance in the open cavity was
lower by 26.2%, thus showing that the cooling of the heater
is quite different. Indeed, Yopt in the open cavity case is lower
by 2.5%, 9.2% and 8.5% for h/L = 0.05, 0.10 and 0.20 re-
spectively. At high Rayleigh numbers, the heaters in the open
cavity case are positioned at higher levels, although the over-
all positioning are similar: at Ra = 106 for example, Yopt in the
open cavity is positioned higher by 17.6%, 27% and 20% for
h/L = 0.05, 0.10 and 0.20 respectively. In fact, the comparative
iso-lines (not presented here) showed that the flow and temper-
ature fields were quite different for enclosure and open cavity,
particularly at high Rayleigh numbers. For example, at Ra =
106, in the enclosure case, ψext/θmax = 7.4873 (X = 0.4125,
Y = 0.5730)/0.079 and in the open cavity case, ψext/θmax =
11.5362 (X = 1.00, Y = 0.6620)/0.069; the isotherms in the
latter case showed that the temperature gradient was higher
near the heater, thus heat transfer and cooling were more vigor-
ous. The flow rate at the mid-plane (X = 0.5) of the enclosure
and that at the exit plane of the open cavity are also quite dif-
ferent: V̇ (enclosure)/V̇ (open cavity) are 0.1363/0.2198 and
7.4345/11.5362 at Ra = 103 and 106 respectively. This is ex-
pected since the ambient air into the open cavity flows through
the lower 2/3 part of the opening. In contrast, the air in the en-
closure circulates close to the bottom wall, as a result of which
the first heater’s optimum position is closer to the bottom. We
see that the flow and temperature fields in the enclosure and
Fig. 6. (a) The optimal heater location and (b) corresponding maximum global
conductance as a function of the Rayleigh number for three heat sources.

cavity cases are quite different. Thus, optimum positions are
different, although some similarities exist, as they should.

4.2. Heat transfer and volume flow rate

The average normalized Nusselt number by Eq. (6) and the
volume flow rate V̇ by Eq. (7) are calculated and presented in
Figs. 7 to 9 for the three cases of one, two and three heaters.
The results are presented for the case of optimum positions, i.e.
for the maximized conductance of each heater.

We present the case of single heater in Fig. 7. We see in
Fig. 7(a) that Nu is an increasing function of Ra and h/L. At
low Rayleigh numbers, the heat transfer is conduction domi-
nated; Nu is equal to one for all three heater sizes. As Ra is
increased the convection becomes dominant and we can see that
Nu becomes an increasing function of the heater size h/L. The
volume flow rate V̇ as a function of Ra with h/L as a parameter
is shown in Fig. 7(b). As expected, V̇ is an increasing function
of both Ra and h/L.

The case with the two heaters is shown in Fig. 8, which
shows that the heat transfer is conduction dominated at Ra =
103, thereafter it becomes convection dominated. Nu is an in-
creasing function of Ra and h/L. Compared to the single heater
case for h/L from 0.05 to 0.20, Nu is increased by 15.6 to 7.8%
respectively at Ra = 107 due to increased number of heaters.
The volume flow rate V̇ is also an increasing function of Ra
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Fig. 7. (a) Nusselt number and (b) flow rate as a function of the Rayleigh num-
ber for the single heat source of three sizes.

and h/L. Compared to the single heater case for h/L from 0.05
to 0.20, it is increased respectively by 91.8 to 67% at Ra = 103

and 15 to 24.4% at Ra = 107.
The case with three heaters is shown in Fig. 9. In this case

also, both Nu and V̇ are an increasing function of Ra and h/L.
Fig. 9(a) shows that the heat transfer is in conduction regime at
Ra = 103, thereafter it becomes convection dominated. Com-
pared to the single heater case for h/L from 0.05 to 0.20, Nu is
increased by 19.2 to 9.5% at Ra = 107. The flow rate V̇ is in-
creased by 1.77 to 1.17 times at Ra = 103 and by 29.9 to 40.9%
at Ra = 107. Obviously, the changes of Nu and V̇ are due to
increased number of heaters.

To see the reason for increased heat transfer and volume
flow rate with increasing heater number, the streamlines and
isotherms for the case of h/L = 0.10 and Ra = 106 with one,
two and three heaters at their optimum positions are produced
and shown in Fig. 10. ψext and θmax are 11.4124 (X = 1,
Y = 0.6625) and 0.0691 respectively for the single heater case
in Fig. 10(a). It is clearly seen that the heater is positioned at
off center, at slightly lower part of the enclosure. The flow en-
ters and moves upward following the position of the heater and
flows over the vertical wall and top horizontal wall and exit as a
jet. The cold ambient air enters at lower 2/3 of the opening sec-
tion and the hot air exits at upper 1/3. The isotherms shown on
the right hand side follow this trend as a consequence of which
Fig. 8. (a) Nusselt number and (b) flow rate as a function of the Rayleigh num-
ber for the two heat sources of three sizes.

the air is cold in about 2/3 part of the cavity. For the two heater
case in Fig. 10(b), the heaters are positioned with unequal dis-
tances from the enclosure bottom to the first heater and from
the first to the second heater. ψext and θmax are 14.7678 (X = 1,
Y = 0.6714) and 0.0755 respectively. The strength of circula-
tion is increased with respect to the single heater case. Since
the optimum position of the first heater is at the lower part of
the enclosure, the cold air enters and follows the bottom hor-
izontal wall, heated at first by the first heater and then by the
second, it flows over the whole vertical wall and exits follow-
ing the top horizontal wall. The ambient air entrance section in
this case is increased to 67.14% of the opening, which is lit-
tle larger than 2/3. The isotherms shown on the right hand side
of Fig. 10(b) depict clearly the domain of the cold air, which
occupies the lower half of the enclosure. Compared to the sin-
gle heater case, the air is heated by the first heater when the air
reaches the vertical wall. Then by the second heater; then the air
continues to go up, parallel to the vertical wall. The three heater
case is shown in Fig. 10(c). In this case, the positions Yopt are
0.05, 0.29 and 0.59 for the first, second and third heaters respec-
tively, which correspond to the distance from the bottom to the
first heater of 0.05 for the first heater, it is 0.14 between the first
and second, and 0.20 between the second and third heaters. This
clearly shows the optimum positioning of the three heaters with
unequal distance between them. ψext and θmax are in this case
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Fig. 9. (a) Nusselt number and (b) flow rate as a function of the Rayleigh num-
ber for the three heat sources of three sizes.

15.9682 (X = 1, Y = 0.6875) and 0.0873 respectively. As ex-
pected, the circulation is stronger with the three heater case with
respect to the two heater case; otherwise, the appearance of the
flow field is almost the same. The ambient air entrance section
is further increased to 68.75% of the opening. The isotherms
at the right hand side of Fig. 10(c) are with higher temperature
gradients with respect to the case with two heaters; otherwise,
they are similar.

5. Conclusions

We studied natural convection heat transfer in a square open
cavity with discrete heat sources installed at the vertical wall
facing the opening. The number of discrete heaters was from
one to three; their size was varied from 0.05 to 0.20, and the
Rayleigh number from 103 to 107. Conservation equations of
mass, momentum and energy were solved by finite difference
– control volume numerical method. At the beginning, the op-
timum positions of discrete heat sources were searched. Then,
the heat transfer and volume flow rate were determined. In view
of the results presented, the main points can be summarized as
follows.

For best thermal performance of discrete heaters installed
on the vertical wall facing the opening of a square cavity, the
optimum positioning is not uniform with equidistance between
them. The optimum positioning is obtained by maximizing the
Fig. 10. Streamlines (on the left) and isotherms (on the right) with h/L = 0.10
and Ra = 106. (a) One heater at its optimum position, Yopt = 0.38, (b) two
heaters at their optimum positions, Yopt = 0.09 and 0.49, (c) three heaters at
their optimum positions, Yopt = 0.06, 0.28 and 0.58.

global performance. The heaters are positioned closer to each
other at the beginning of the fluid flow. The final configuration
of discrete heaters depends on Rayleigh number.

The maximum global conductance is quasi-independent of
Rayleigh number for single and double heaters and h/L = 0.05
at Ra < 104. The maximum global conductance is strongly
Rayleigh number dependent in other cases; it increases with
increasing Rayleigh number. Similarly, the maximum global
conductance is increased with the number of heaters as well
as with the heater size.

In determining the maximum conductance, we observe
broad optima in C versus Y plots; in practical terms, this does
not cause any difficulty in determining Cmax. On the other hand,
it shows that there is certain flexibility for positioning of the
heaters if the technical circumstances require it.

At low Rayleigh numbers, Ra < 104, it is conduction domi-
nated regime. At higher Rayleigh numbers, the convection be-
comes dominant regime. Generally, the Nusselt number and the
volume flow rate are increasing function of the Rayleigh num-
ber, the heater size and the number of discrete heaters.



A. Müftüoğlu, E. Bilgen / International Journal of Thermal Sciences 47 (2008) 369–377 377
Acknowledgements

The financial support for this study by Natural Sciences and
Engineering Research Council Canada is acknowledged.

References

[1] H.Y. Wang, F. Penot, J.B. Sauliner, Numerical study of a buoyancy-
induced flow along a vertical plate with discretely heated integrated circuit
packages, Int. J. Heat Mass Transfer 40 (1997) 1509–1520.

[2] Y. Liu, N. Phan-Thien, An optimum spacing problem for three chips
mounted on a vertical substrate in an enclosure, Numer. Heat Transfer
A 37 (2000) 613–630.

[3] A.K. da Silva, S. Lorente, A. Bejan, Optimal distribution of discrete heat
sources on a wall with natural convection, Int. J. Heat Mass Transfer 47
(2004) 203–214.

[4] A.K. da Silva, S. Lorente, A. Bejan, Optimal distribution of discrete heat
sources on a plate with laminar forced convection, Int. J. Heat Mass Trans-
fer 47 (2004) 2139–2148.

[5] A.K. da Silva, S. Lorente, A. Bejan, Maximal heat transfer density in ver-
tical morphing channels with natural convection, Numer. Heat Transfer
A 45 (2004) 135–152.

[6] A.K. da Silva, G. Lorenzini, A. Bejan, Distribution of heat sources in ver-
tical open channels with natural convection, Int. J. Heat Mass Transfer 48
(2005) 1462–1469.

[7] A.K. da Silva, L. Gosselin, Optimal geometry of L and C-shaped chan-
nels for maximum heat transfer in natural convection, Int. J. Heat Mass
Transfer 48 (2005) 609–620.

[8] O. Polat, E. Bilgen, Conjugate heat transfer in inclined open shallow cav-
ities, Int. J. Heat Mass Transfer 46 (2003) 1563–1573.

[9] S.V. Patankar, Numerical Heat Transfer and Fluid Flow, Hemisphere Pub-
lishing Corporation, New York, 1980.

[10] E. Bilgen, R. Ben Yedder, Natural convection in enclosure with heating
and cooling with sinusoidal temperatures on one side, Int. J. Heat Mass
Transfer 50 (2007) 139–150.

[11] D. de Vahl Davis, Natural convection of air in a square cavity: a benchmark
solution, Int. J. Numer. Methods Fluids 3 (1983) 249–264.

[12] D.C. Wan, B.S.V. Patnaik, G.W. Wei, A new benchmark quality solution
for the buoyancy driven cavity by discrete singular convolution, Numer.
Heat Transfer B 40 (2001) 199–228.

[13] Y.L. Chan, C.L. Tien, A numerical study of two-dimensional natural con-
vection in square open cavities, Numer. Heat Transfer 8 (1985) 65–80.


